

 Table of Contents

 	

 Introduction

 1.1

 	

 Part 1 - Setup

 1.2

 	

 Part 1.1 - Components

 1.2.1

 	

 Part 2 - Content Creation

 1.3

 	

 Part 2.1 - Markup Content

 1.3.1

 	

 Part 3 - Compilation

 1.4

 	

 Part 3.1 - Output Formats

 1.4.1

 	

 Part 4 - Publishing

 1.5

 	

 Part 4.1 - Serving Content from AWS

 1.5.1

 Introduction

Lab 1 - Electronic Publishing Overview

This lab was created to demonstrate the way in which Hassium Labs
content is produced and published.

Source Code

All of the source for this lab is available from the Hassium Labs GitHub Organization

 Part 1 - Setup

Part One - Setup

The first step in the publishing process is to gather the needed tools to process the content to be published.

 Part 1.1 - Components

Part 1.1 - Components

The components involved in the publishing process are the content which
is marked up using the simple but powerful AsciiDoc
and the Gitbook toolchain of publishing libraries.
To further simplify the collection and installation of the toolchain components I’ve
encapsulated them all into a Docker image which is then fronted with a script to
run the various commands to keep the tools that have to be locally installed
to a minimum.

Locally Installed

	
Make - Wraps docker commands

	
Git - Source Control

	
Docker - Text processing toolchains installed on containers

Publishing toolchains

Gitbook is used to publish the labs and Hugo
to publish the website. Both of these can be installed locally but for ease of integration with
continuous integration services they’ve been installed into docker images

	
GitBook - Lab content published as HTML, PDF, MOBI and EPUB

	
Hugo - Website publishing

Services

	
GitHub - Git Repos

	
Docker Hub - Docker Repos

	
Travis CI - Build service

	
AWS - Infrastructure

	
S3 - Simple Storage Service - Content Storage

	
CloudFront - Content Distribution

	
Route 53 - DNS

 Part 2 - Content Creation

Part Two - Content Creation

With the tools installed we’re ready to create and annotate the content for publishing.

 Part 2.1 - Markup Content

Part 2.1 - Markup Content

The website uses Markdown to annotate content and
the labs use the slightly more complex AsciiDoc to be able
to do some more advanced text formatting. Regardless of the language used the ability to focus on content rather than
the formatting greatly accelerates the writing process. The links above show the markup capabilities for each of the
languages, Markdown has the advantage of being incredibly simple to learn but has limited capabilities.
AsciiDoc can be used in a simplistic way to do basic formatting but has advanced capabilities when needed.

 Part 3 - Compilation

Part Three - Compilation

The payoff for going through the markup process is that the tools can compile the content
into many different types of output formats by applying different styles. Each of the toolchains
have been installed into docker containers so if you use the provided Docker and Make script
to build artifacts you’ll get the same output as when built using the automated method.

GitBook Dockerfile

Hugo Dockerfile

 Part 3.1 - Output Formats

Part 3.1 - Output Formats

With GitBook, once content has been annotated it can be transformed into
many different final products. Using the Gitbook toolchain we can produce
HTML, PDF, MOBI and EPUB documents from a the same source content by applying different style sheets.

 Part 4 - Publishing

Part Four - Publishing

 Part 4.1 - Serving Content from AWS

Part 4.1 - Serving Content from AWS

S3 Storage

In the git repo holding the content a naming convention using the names of branches correspond
to a production and staging environment for the website. When code is pushed to the GitHub
repo test branch a Travis CI build is kicked off which runs a deployments script which syncs
the generated artifacts to a specific location within the S3 bucket.

Bucket file structure

hassiumlabs-website/
├── production
│ ├── labs
│ └── site
└── test
 ├── labs
 └── site

travis-deploy script

if ["$TRAVIS_BRANCH" == "master"]; then
 aws s3 sync _book/ s3://hassiumlabs-website/production/labs/lab-001-electronic-publishing/ --delete
fi

if ["$TRAVIS_BRANCH" == "test"]; then
 aws s3 sync _book/ s3://hassiumlabs-website/test/labs/lab-001-electronic-publishing/ --delete
fi

IAM Service User

To allow Travis CI to publish to S3 an IAM (Identity and Access Management) user with API
credentials was created which allows read/write access to the S3 bucket in which the finished
artifacts are staged. The user credentials can be configured within the Travis CI build and
injected into the build as environment variables so you don’t have to hard-code credentials into
a build script.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::hassiumlabs-website"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::hassiumlabs-website/*"
]
 }
]
}

CloudFront Content Distribution Network

When configuring CloudFront, production and test distributions were created which both have base origin
settings of the same bucket but use different origin paths within the bucket (/production/site or /test/labs). Each
of the distributions may also have different settings like the Time To Live (TTL) which is much more aggressive for
the production site to allow for more effective caching and rather short for the test site so updates can be
previewed more rapidly.

Route53 DNS

Both the production and test CloudFront distributions have their own DNS records which in Route53
are set to A and AAAA (IPV6) alias records pointing to the CloudFront distribution names. Both the test and
production content is stored in the same S3 bucket and synchronization is done based on the git branch used.
The travis-deploy
script shown above is the mechanism that examines the branch being pushed to the GitHub repo
and uses the IAM service user credentials saved within the Travis CI job
to push the content to the appropriate location within the S3 bucket.

Data Flow

[image: Data Flow]

data-flow.png
Amazon

Local Git repo Public repo Travis CI Amazon S3 CloudFront CDN
H iy
itHu)

e v
— — docker —

Pushed to Compiled using Synced to Served by

cover.jpg
Electronic Publishing
Hassium Labs

